
44 Lauterbach GmbH
Altlaufstraße 40 • 85635 Höhenkirchen (Germany) • Tel: +49 8102 9876 0 • sales@lauterbach.com

Software-only Products

Benefi t from the same user interface on all products.

Hardware-based Products

For more information visit: www.lauterbach.com/rtoslinux.html

TRACE32®

Linux Debugging

• ARM®/CortexTM

• Intel® AtomTM

• MIPS® Architecture
• Power Architecture®

• and others

Power
Debug

Debugger via JTAG
Mainly Stop-mode debugging
Combined Run- and Stop-mode
debugging possible

Real-Time Trace
Linux-aware single core and
multicore tracing
Stop-mode debugging only

Debugger via GDB Protocol
Run-mode debugging
GDB and KGDB

Debugger for Virtual Targets
Mainly Stop-mode debugging
Run-mode debugging possible

Power
Trace

Real-Time Trace
Linux-aware single core and
multicore tracing
Stop-mode debugging only

Front-
End

Front-
End

TRACE32 Debugger
Virtual Target

TRACE32 Debugger

Power
Debug

Debugger via JTAG
Mainly Stop-mode debugging
Combined Run- and Stop-mode
debugging possible

Real-Time Trace
Linux-aware single core and
multicore tracing
Stop-mode debugging only

Debugger via GDB Protocol
Run-mode debugging
GDB and KGDB

Debugger for Virtual Targets
Mainly Stop-mode debugging
Run-mode debugging possible

Power
Trace

Front-
End

Front-
End

TRACE32 DebuggerTRACE32 Debugger
Virtual Target

TRACE32 DebuggerTRACE32 Debugger

www.lauterbach.com/rtoslinux.html2 3

Run-mode Debugging

Linux-aware Tracing

Trace technologies allow an in-depth analysis of the behavior and the timing characteristics of the embedded system.
Core trace modules generate information on the instruction execution and running processes for their related core.

Off-chip parallel or serial trace ports allow a TRACE32 trace tool to record this information for Linux-aware trace
analysis, providing effective troubleshooting, comprehensive profi ling and quality assurance.

Time chart of processes and threads

Call tree of a thread

A JTAG debugger works with Stop-mode debugging. This
means the processor and thus the whole system is stop-
ped whenever a breakpoint is hit. This behavior makes it
possible to analyze the overall system state at a specifi c
point in time.

Benefi ts
• The only requirement for Stop-mode debugging is a

functioning JTAG interface. This enables debugging
from the reset vector.

• Debugging of the kernel and beyond process boun-
daries is possible because the TRACE32 debugger
offers both Linux and MMU support.

• If the software ceases to react, the processor can be
stopped to fi nd out the point in the code where the
processor crashed.

• If the processor is stopped, neither the kernel nor
any other process can interfere with your analysis.

Stop-mode Debugging

Debugging via GDB protocol is Run-mode debugging. This means only the selected process is stopped, while the
kernel and all other processes are not infl uenced.

Benefi ts
• Ideal for pure application process debugging
• Communication interfaces remain active
 (e.g. Ethernet, RS232)
• As a special feature, TRACE32 allows the user
 to concurrently use Run- and Stop-mode
 debugging.

List of Linux processes

MIPS for processes and threads

Linux Debugging Environment

TRACE32 supports all Linux distributions, bundles and platforms using
the standard Linux kernel (e.g. Android). It offers:
• Linux-aware debugging of single core systems
• Linux-aware debugging of SMP systems

Process-aware breakpointList of Linux processes

www.lauterbach.com/rtoslinux.html2 3

Run-mode Debugging

Linux-aware Tracing

Trace technologies allow an in-depth analysis of the behavior and the timing characteristics of the embedded system.
Core trace modules generate information on the instruction execution and running processes for their related core.

Off-chip parallel or serial trace ports allow a TRACE32 trace tool to record this information for Linux-aware trace
analysis, providing effective troubleshooting, comprehensive profi ling and quality assurance.

Time chart of processes and threads

Call tree of a thread

A JTAG debugger works with Stop-mode debugging. This
means the processor and thus the whole system is stop-
ped whenever a breakpoint is hit. This behavior makes it
possible to analyze the overall system state at a specifi c
point in time.

Benefi ts
• The only requirement for Stop-mode debugging is a

functioning JTAG interface. This enables debugging
from the reset vector.

• Debugging of the kernel and beyond process boun-
daries is possible because the TRACE32 debugger
offers both Linux and MMU support.

• If the software ceases to react, the processor can be
stopped to fi nd out the point in the code where the
processor crashed.

• If the processor is stopped, neither the kernel nor
any other process can interfere with your analysis.

Stop-mode Debugging

Debugging via GDB protocol is Run-mode debugging. This means only the selected process is stopped, while the
kernel and all other processes are not infl uenced.

Benefi ts
• Ideal for pure application process debugging
• Communication interfaces remain active
 (e.g. Ethernet, RS232)
• As a special feature, TRACE32 allows the user
 to concurrently use Run- and Stop-mode
 debugging.

List of Linux processes

MIPS for processes and threads

Linux Debugging Environment

TRACE32 supports all Linux distributions, bundles and platforms using
the standard Linux kernel (e.g. Android). It offers:
• Linux-aware debugging of single core systems
• Linux-aware debugging of SMP systems

Process-aware breakpointList of Linux processes

44 Lauterbach GmbH
Altlaufstraße 40 • 85635 Höhenkirchen (Germany) • Tel: +49 8102 9876 0 • sales@lauterbach.com

Software-only Products

Benefi t from the same user interface on all products.

Hardware-based Products

For more information visit: www.lauterbach.com/rtoslinux.html

TRACE32®

Linux Debugging

• ARM®/CortexTM

• Intel® AtomTM

• MIPS® Architecture
• Power Architecture®

• and others

Power
Debug

Debugger via JTAG
Mainly Stop-mode debugging
Combined Run- and Stop-mode
debugging possible

Real-Time Trace
Linux-aware single core and
multicore tracing
Stop-mode debugging only

Debugger via GDB Protocol
Run-mode debugging
GDB and KGDB

Debugger for Virtual Targets
Mainly Stop-mode debugging
Run-mode debugging possible

Power
Trace

Real-Time Trace
Linux-aware single core and
multicore tracing
Stop-mode debugging only

Front-
End

Front-
End

TRACE32 Debugger
Virtual Target

TRACE32 Debugger

Power
Debug

Debugger via JTAG
Mainly Stop-mode debugging
Combined Run- and Stop-mode
debugging possible

Real-Time Trace
Linux-aware single core and
multicore tracing
Stop-mode debugging only

Debugger via GDB Protocol
Run-mode debugging
GDB and KGDB

Debugger for Virtual Targets
Mainly Stop-mode debugging
Run-mode debugging possible

Power
Trace

Front-
End

Front-
End

TRACE32 DebuggerTRACE32 Debugger
Virtual Target

TRACE32 DebuggerTRACE32 Debugger

